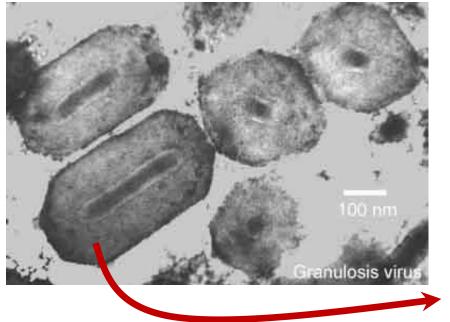


**BIOLOGICAL INSECTICIDE** 

## **Insecticidal Virus** for Control of Codling Moth Larvae



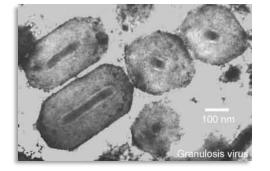






#### Active ingredient: Codling moth granulovirus

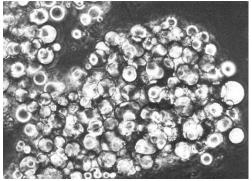
Electron photomicrograph of CpGV



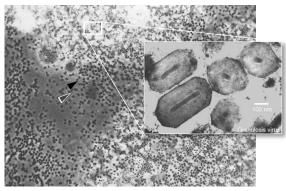

- Cydia pomonella granulovirus (CpGV)
- Natural pathogen of codling moth
- "Mexican" isolate CpGV-M (1963)
- Commercial use since 1988 (Europe)



Occlusion body (OB)






- Virus is produced in mass-reared codling moth larvae
- Formulated as aqueous suspension concentrate (3 × 10<sup>13</sup> OB/L)
- Highly specific to codling moth larvae
- No effect on beneficials, wildlife, livestock, or users
- Can be used in organic production (OMRI/EcoCert)

# Biology & Mode of Action of CpGV



Fat body of healthy larva



Fat body infected with CpGV



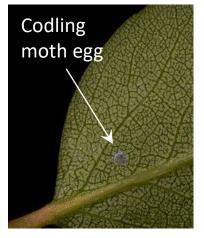
CpGV infected larva

- Virus must be ingested to infect larvae.
- Once in gut, OB dissolves & releases infectious virus particles (nucleocapsids)
- Virus penetrates midgut cells & replicates
- Replicated virus spreads to other tissues & continues to replicate exponentially
- Larva stops feeding in 1-3d, dies in 3 -7d (depends on temperature, dose & larval age)
- LD<sub>50</sub> is 1 or 2 virus particles per larva (1 ml of Cyd-X contains at least 30 trillion OBs!)

## Symptoms of CpGV Infection (Laboratory)



#### Healthy CM larva

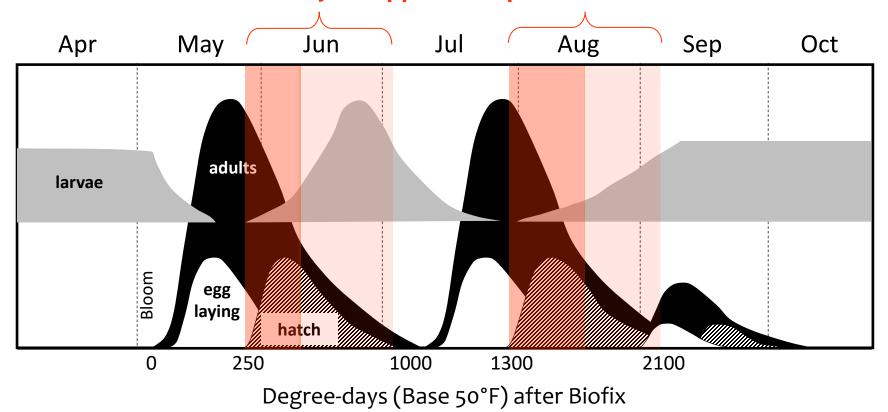

Larva killed by CpGV

## Symptoms of CpGV Infection (Field)



Failed entry ("sting") Larva infected as early instar, died before entering fruit Larva probably infected as late instar or with low dose, died inside apple

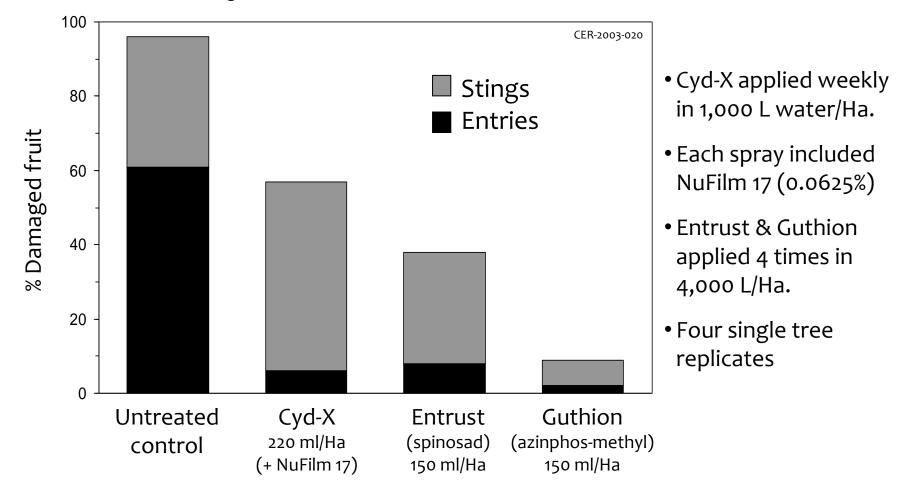
## Infection route & application timing



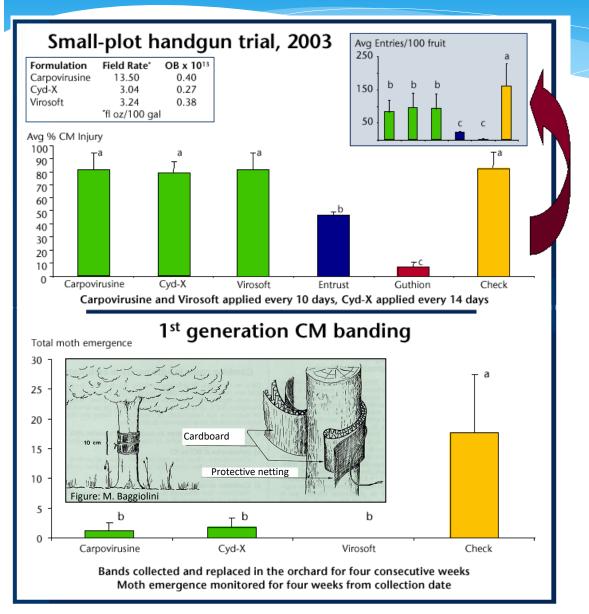



- Virus must be ingested by larva to initiate infection.
- Larva continues to feed until virus replicates enough to kill it (can require several days).
- Neonate larvae wander after hatching to seek fruit (usually within 1-2 days).
- Most don't eat until they enter fruit (may drink water droplets and sample foliage).
- Larvae don't ingest skin when making entry hole.
- Virus picked up on body & mouthparts will contaminate feeding site & infect larva when it starts to feed.
- Target hatching eggs and wandering larvae

# Codling moth phenology


Cyd-X application periods




Source: L. Gut & J. Wise Michigan State University Extension Bulletin E-154 http://www.msue.msu.edu/epubs/pestpubs/E154/18-CodlingMoth.pdf

## Short-term (single season) effects of CpGV application

Crop: Red Delicious apples Investigator: Dr. Helmut Riedl, Oregon State Univ. Location: Hood River, Oregon

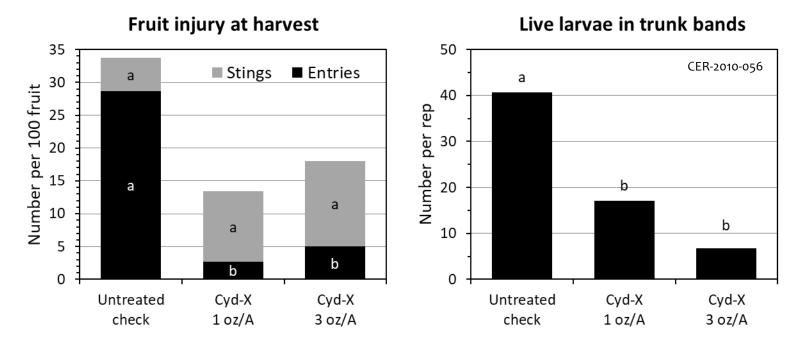


#### **CpGV Use Strategy:** Damage prevention vs. Population reduction



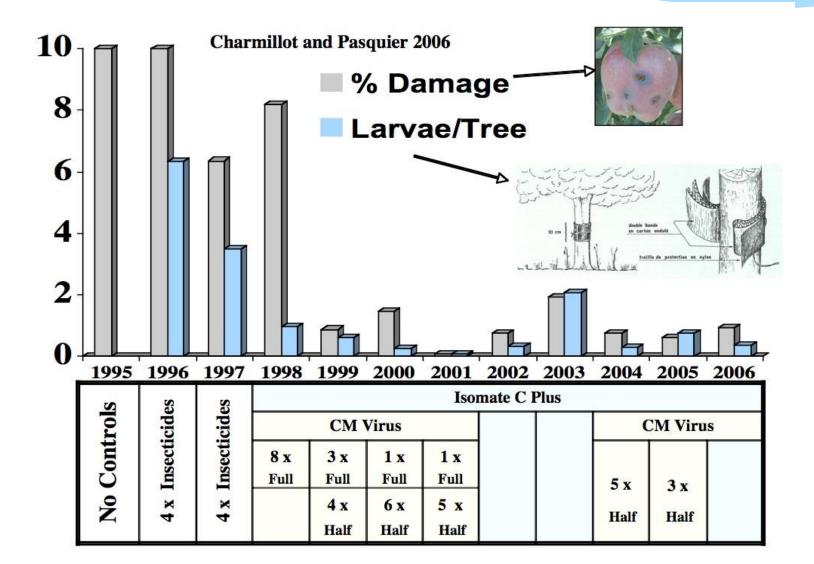
http://entomology.tfrec.wsu.edu/jfbhome/growerarticles/03-WSHAOrganicCMPoster-JFB.pdf

- CpGV applied against 1<sup>st</sup> generation larvae.
- Virus did not eliminate damage but resulted in fewer entries than UTC.
- High level of delayed mortality (reduction in subsequent generation)


Source: "Managing Codling Moth with Granulovirus and Spinosad" by K. Granger, J. Brunner, & M. Doerr (Washington State Univ.)

Poster presentation, 2003 Wash. State Hort. Assoc. meeting, Wenatchee, WA

## Short-term (single season) effects of Cyd-X application


#### Effect of Cyd-X on Codling Moth Damage & Larval Survival

Investigators: J. Brunner & M. Doerr (Washington State Univ.) Location: Wenatchee, Washington



- 3 4 applications per larval generation.
- Rear's Pak-Blast Airblast sprayer delivering 200 GPA at 200 psi.

### Cumulative effects of CpGV applications



## Longer-term (population) effects of CpGV

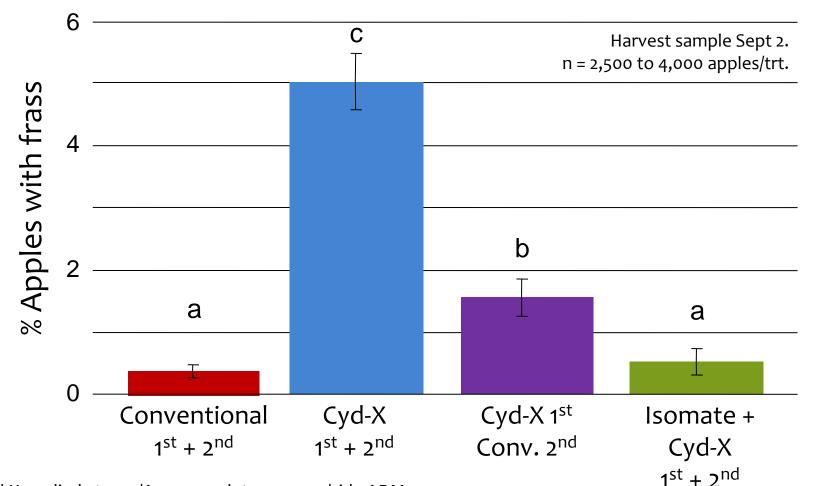


### Horizontal transmission:

Infected larva dies, releasing new virus that can infect other larvae on the same crop

### Vertical transmission:

Female that survives a sublethal infection as a larva can pass virus on to her offspring via egg contamination.


#### Latent infection:

Virus lies "dormant" in host, until stress causes outbreak (e.g. overwintering, heat/cold stress, insecticides)



## Granulovirus and Mating Disruption vs. Codling Moth

Investigators: Larry Hull & Greg Krawczyk, Penn State Univ. Location: Peach Glen, PA (2004)



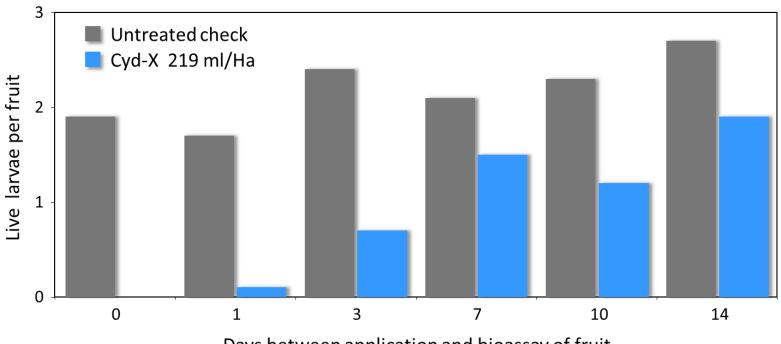
Cyd-X applied at 3 oz/Acre complete or 1.5 oz/side ARM Isomate CM/OFM TT applied at 200 dispensers/Acre



- Application rate: 75 250 ml/Ha (75 ml pending PMRA approval)
- 2 4 applications per larval generation
- Time 1<sup>st</sup> application at 0-5% egg hatch USA: 200 – 250 DD after biofix if using heat units
- 2<sup>nd</sup> application 7-14 days later or at peak egg hatch
- Subsequent applications at 7-14d intervals if needed
- Use sufficient water to attain thorough coverage
- Avoid high pH ( $\geq$  9) in spray tank

## **Environmental persistence**






- Virus persists for years in soil, leaf litter, etc.
- Half-life is 2-3 days in direct sunlight
- Longer persistence (7+ days) on shaded foliage
- Common recommendation: Reapply after 7-8 sunny days
- High temperature is <u>not</u> an issue in the field
- Moderately rainfast once spray has dried

## Test of residual activity on apples

USDA-ARS, Wapato, WA (2003)

Five larvae confined in the laboratory on apples picked immediately before and 1 to 14 days after application.



CYD-X<sup>°</sup>

**BIOLOGICAL INSECTICIDE** 

Days between application and bioassay of fruit

## Adjuvants/Compatibility



- Natural UV protection
  - "Whole" virus product, not artificially "purified"
  - No chemical additives or residues
  - Can enhanced to some extent by pinolene (NuFilm), humic acid, powdered milk, molasses
- Feeding stimulant may help more than UV screen Sugar or molasses (5 -7 lb/A), brewer's yeast
- Avoid silicone spreaders
  - Use oil-based or similar "spreader/stickers" (NuFilm, MSO, etc.)
- Compatible with other orchard pest management tactics
   Excellent fit with pheromone-based mating disruption
   Tank mix with most insecticides/fungicides/acaricides
   Do not mix with copper fungicides if using low rates



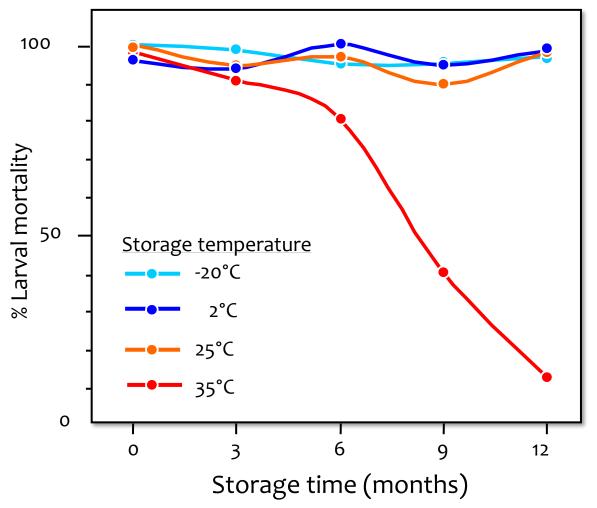


# USA:

- "90 days at 90 degrees (F)"
- Refrigeration not required if used within 3 months.
- Refrigerate (4°C) any unused Cyd-X and use it first next season.
- Cyd-X can be frozen for longer term storage.
- Certis keeps Cyd-X cold until shipped to distributor.

# Canada:

"Store refrigerated at 4°C for up to one year from the date of manufacture."




## Storage stability



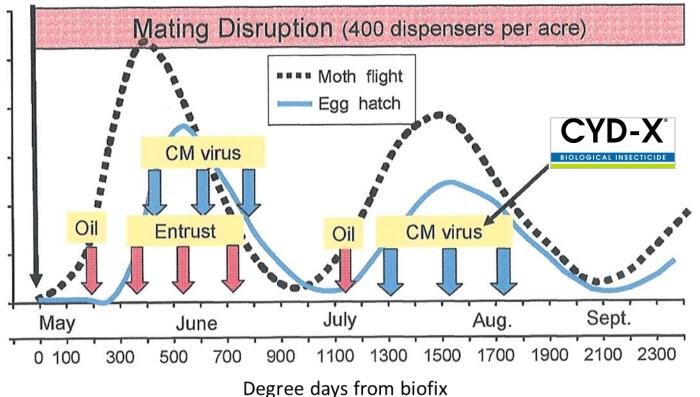
Results of storage stability study conducted by USDA-ARS, Wapato, WA

Lacey et al. 2008. J. Econ. Entomol. 101(2): 288 – 294.



- Product stored at constant temperature.
- Sampled every 3 months.
- Diluted to 2 ppm for bioassay against 1<sup>st</sup> instar CM larvae (40X below field rate)
- No significant loss in potency if stored at room temperature (25°C) or lower.

### Recommended Cyd-X Program:




## Conventional Orchards

- 2 to 4 applications against 1<sup>st</sup> larval generation
- Rotate/mix with insecticide for rapid knock-down if desired
- Switch to chemical insecticides for 2<sup>nd</sup> larval generation
- Tank-mix or rotate with Cyd-X for resistance management
- Population management strategy:
  - Virus will reduce number of 2<sup>nd</sup> flight moths produced by 1<sup>st</sup> brood
  - Control of 2<sup>nd</sup> generation larvae will be easier
  - Virus will shift injury from deep entries to stings
  - Sting injury from 1<sup>st</sup> generation larvae is of lower economic impact
  - Rely on chemical insecticides to prevent direct damage by 2<sup>nd</sup> gen.
  - Virus can reduce overwintering larval population
  - Vertical transmission (carry-over of virus infection to next season)


## Cyd-X Program in Organic Apples (WSU - 2003)

#### Bloom



## Cyd-X Program in Organic Apples

#### Washington State University (2003)



# Toxicity of different active substances on beneficial organisms in fruit production Interaction of different active substances against Cydia pomonella to

Interaction of different active substances against Cydia pomonella to population of Pear Psylla (Cacopsylla pyri)

|                                       | Fruit damage<br>caused by Cp [%] | Efficacy [%] | Fruit damage<br>caused by Psylla |
|---------------------------------------|----------------------------------|--------------|----------------------------------|
| Pyrethroid<br>B treatments)           | 5.2                              | 81.7         | 100                              |
| <b>Veonicotinoid</b><br>3 treatments) | 4.7                              | 83.5         | 85                               |
| Drganophosphate<br>treatments)        | 5.5                              | 80.7         | 0                                |
| C <b>pGv</b><br>I treatments)         | 0.5                              | 98.2         | 0                                |
| Control                               | 28.5                             |              | 0                                |
|                                       |                                  |              |                                  |

Servicio Fitosanitario, Regione Emilia-Romagna, M. Boselli, 2009







#### Lethal Infection

Introducing CYD-X insecticidal virus, the worst medical disaster to befall codling moth larvae. When ingested by codling moth, this powerful biological insecticide replicates inside the larval gut. Prognosis: Death by massive viral infection. Specific only to codling moth, CYD-X cannot harm non-target species. Ideal for resistance management programs. Perfect partner with mating disruption programs.

It's flu season for Codling Moth

CYD-X



